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Heating rate of hadron beams during crystallization
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A theory concerning the relation between the heating rate and temperature of hadron beams is formulated
from a quantum point of view. This theory predicts that the heating rate can be reduced by increasing the lattice
periodicity of the accelerator with its fixed tunes and circumference. This prediction is quite consistent with
simulation results.
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I. INTRODUCTION whereg, , are the transversg functions, 7 is the dispersion
function, andy is the Lorentz factor. If this conservation law

Hadron beams are currently being accelerated by accels exact, there is an equilibrium temperature. The time evo-
erators. The velocity of these beams is relatively smalljution of the temperature is confined by this law. Here, we
which means that their Lorentz factaris not very large can expect that the temperature will be in equilibrium expo-
compared with that of electron beams. This is because thgentially. Thus, we may evaluate that the heating rate must
hadron has a large mass to be accelerated to the speed g exactly zero for any temperature. However, the heating
light. In nonrelativistic hadron beams, the space-charge efrate was positive definite according to previous MD simula-
fect is serious. In space-charge effect-dominated beams, Wgyns. Thus, we cannot apply this conservation law.
expect that there occurs a special phenomenon, which is |, grder to create a crystalline beam, it is desirable to

called a crystalline beam. Actually, it has been confirmed thafe ,,ce the peak value of the heating rate that we mentioned
this type of beam can be created based on molecular dynarB’reviously. If this is possible, the necessary laser power will

iCséweDi)n?riiw;?ttigr?w[ple_rg]t.ure of a crystalline beam could bebe lower. In order to solve this problem, it is necessary to
defined by the rms of the kinetic energy of the particles com-(aStabIISh a theory to explain the relation between the tem-

prising the beani4—6]. Thus, by reducing a temperature, we perature and the heating rate. In Sec. Il, we mention a theory

could obtain the space-charge-dominated beam, or a cryst p explain the simulation results. In Sec. Il A, we evaluate the

line beam. It was also known that this type of crystaliine eating rate that is caus'ed by intrgbeam scatter_ing. This is

beam can be destroyed by stopping the cooling system due Rtsed on a theory established by Bjorken and Mtinfiz.

the alternating gradient focusing systef®,5]. In other In Sec_. IIB we evaluate the temperature where intrabeam

words, a crystalline beam must be maintained by cooling th&cattering cannot occur. In Sec. Il C, we formulate a theory

hadron beam. Further, it has been known that a crystallinef heating that is caused by the phonon emissions in a crys-

beam cannot be obtained in a weak-focusing sydi2/s.  talline beam. Especially in Sec. 1D, we explicitly calculate

Thus, we could not avoid this beam heating in acceleratorshe heating rate by considering a one-dimension beam, be-

Temperature-heating rate relations could also be obtained ipause such a beam is so much simpler than the two or three-

previous studies by simulatiod§—9]. This relation has an dimension case, and can thus deal with this case most rigor-

interesting feature. At high temperatures, the heating rate insusly. In Sec. I, we find that our theory is consistent with

creases as the temperature decreases. For lower tempesimulation results by comparing them. Conclusions and dis-

tures, the heating rate decreases as the temperature decreag@ssions are given in Sec. IV. In Appendix A, we show the

The heating rate has a peak value for a certain temperaturgiffusion time formula obtained by Bjorken and Mtingwa
The above-mentioned feature of the heating rate can bg ). |n Appendix B, we show the Taylor expansion of the

ynderstood quahtatlveljzg]. For a hl_gher temperature, thg Coulomb potential for a one-dimension crystal.

intrabeam scattering effect is significant. Thus, the heating

rate increases as the beam size becomes smaller by reducing

the temperature. When the temperature is sufficiently lower, IIl. HEATING MECHANISM

the intrabeam scattering effect is reduced. The heating rate A. Heating caused by intrabeam scattering

cannot be higher. For a sufficiently low temperature, heating . . . .

is caused by lattice vibration of the beam, because the hadron Using a formula of Bjorken and Mtingwa 2], we obtain

beam is crystallized at this low temperature. an expression of the heating rate. For weak-focusing accel-
For a higher temperature, there have been theories th&fators, we reproduce E() from Eq.(Al) in Appendix A.

deal with the intrabeam scattering effect. Pwinski first for-According to Eq(A6), A ;=\,=\3 is the equilibrium point,

mulated such a theory, while considering the intrabeam scawhich is equivalent to

tering [10,11]. In this theory, the transverse emittanasgs,

2
and the longitudinal emittance, have a conservation law, 1 77 _&_ & o
€s| 2 . (3]
> Y" By Bx IBy
Lz =) 4 (22) ~time independent
€s v? o\ By By * By 'me ihdependent, For strong-focusing accelerators, there is no conservation

(1) law, as they stated. Following the consideration for the weak-
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focusing case, we expect that the heating rate is determined V
by minimizing the value of Eq(A6). This condition might
mean that\;=X\,=\3. However, this condition cannot be
satisfied, because the function 3, ,(s) and the dispersion
function (s) have ars dependence. Even if in Eq.(Al) is
completely zero, the situation is the same. Since the heating
is caused by the dependence of the Twiss parameters, we
expand Eq(A6) around the mean of the Twiss parameters.
In real accelerators¢ is sometimes very small. We also
make an approximation for a sma#, obtaining the follow-

ing formula:
d 4 7Za2MN(log) 1 o :
—In(eseye) = — ————— FIG. 1. Schematic picture of coulomb potential of a space-
dt yl: Ei charge-dominant beam.
),27 Sn S 2 the space-charge effect is serious for a lower temperature.
7 B . . .
X 2—— — | — 8By For a space-charge-dominant beam, intrabeam scattering
cannot occur.

The temperature at which intrabeam scattering is not able

to occur can be evaluated qualitatively. When the beam is

Spx— = BX space-charge dominant, the Coulomb force of this beam can
almost be canceled by the external magnetic field, such that

B 2—2 S 5ﬁ 2 252
(| Brsp,- Y (2_71_ x) , zzezN:MwBR | ©
By IBX 7 BX C 2
(3 whereeis the charge of an electromy is the betatron fre-
guency, andR is the radius of this beam. By using E®),
wherez is the charge of this particle evaluated by the electhe mean distancd between particles is evaluated as fol-
tron charge a, is the fine-structure constari¥] is the mass lows:

of the particle,N is the number of particlegjog) is the " "
Coulomb log,I' = (27)%2%,€,/esC, C is the total length of d:<§) :( Zzez)
this ring, By, ﬁuandﬁare the_ mean values of each param- N wag
eter, 68x=Bx— Bx, 6By=PBy— By, and sn=n—7 are the
deviations from each mean value.

By applying Eq.(3) to a FODO lattice(a lattice which is
composed of focusing and defocusing magneising the
thin-lens approximation, we obtain the following formula:

(6

Under this situation, we expect that the potential of the beam
is described as in Fig. 1. In order for intrabeam scattering to
occur, particles significantly approach each other. Thus, the
kinetic energy must be larger than the potential energy. The
critical temperaturd . beyond which there occurs intrabeam

scattering is evaluated as
4 ma2MN(log) 2
t|I’1(65<5y65) —_—

= ey Z
T 2N kgTo>—

(4)
dez = MCZ( I’M

&) 2/3 (7)

C

whereN, is the number of unit cells and is the tune. From  \yherer,, =Z2e%(Mc? andkj is the Boltzmann constant.
Eq. (4), we find that we can reduce the heating rate by in-

creasingN; with fixed tunes. C. Heating caused by phonon emissions
For a beam with a temperature lower than, the cause
of the heating is expected to be the lattice vibration of the
The heating curve has an interesting feature, as mentioneatystallized beanf9]. Here, we consider the heating of this
in the introduction. When the temperature is sufficientlycrystalline beam. This situation can also be described by the
high, the heating rate increases as the temperature decreaggisonon emission from a quantum point of view. The time-
When the temperature is sufficiently low, the heating ratedependent Hamiltonian can cause a phonon transition from
decreases. If Eq$3) and(4) are correct for a lower tempera- one state to another. As time passes, if the number of
ture, the heating rate would be infinite for zero temperaturephonons in higher states becomes larger than those in lower
This means that the cause of the heating is not intrabearstates, we consider that heating occurs. In this picture, the
scattering for a lower temperature. Actually, we expect thaheating rate is described as follows:

B. Critical temperature

026502-2



HEATING RATE OF HADRON BEAMS . ..

PH'SICAL REVIEW E 65 026502

Ed—T:Z VAL(Ny j@ 4 3+ FNgnogn) = (M j@ 4 g+ -+ Mynwsy) ]
T dS n,m kBNT
1 iMu 2
XIim—|{n,q,...,n35| P ex fH,ds m; q,...,May
t*)OCt ' ' h O ' ’
vhoy g vhwsy vhw, | vhwsy
X 1—exp{— KaT )---(l—exp{— KaT ex _m+*1I<B—Tm_m3'NkB—T’ (8)

where we assume the phonons obey the Boltzmann distribuyy(sp,, 0Py i 1Pz 2 S)=(p%+ (5pix))<i_5pix)(10+(pi0y

tion, T is the temperaturem; ;=m;(k;) is the number of
phonons in the initial statesy; ;=n;(k;) is the number of
phonons in the final statesy; ;= w;(k;) is the lattice vibra-
tion “frequency,” whose dimension is nt, i runs in+, —,
and 3 and runs from 1 toN, v is the velocity of the beam,
P means the time-ordered produdt; is the interaction
Hamiltonian that comes from tteedependence of the Hamil-
tonian, and|n, 1,...,n3y)’s and [m, 1 ,...,mgy)'s are the
phonon eigenstates.

In order to calculate the heating rate, we should calculate

the phonon transition probability. Following, Wei, Li, and
Sesslef1,5], the original Hamiltoniar?{ can be written as

N
S | Ypeipipz_ Y p
H_i=l [Z(Pix+Piy+Piz) p(S) X|F)|z
1 [l_n(s)] 2 n(s) 2 rM
+§[ pZ(S) Xi + pZ(S) Yi ]+ Bz'szC’ (9)
where
Ve(Xi Yi,2i)
IES L
215070 Xy em— X0+ Yiem— Y1)+ (Ziom—2)°
(10

i denotes the particle indes,is the path length of an ideal
particle,p(s) is the radius of curvaturgg=v/c, x,y,zare the
spatial coordinates)(s) is the strength of the focusing mag-
netic field, which is represented as p/(By)dB,/dy

field in they direction.

—pl(Bo)dB, /dx andBj, is the constant bending magnetic

+ o)y — 5piy)’i0+ (Po+ Opi)z
— 2 (11)

Here, X7, pf,.Y7.Pfy. 2.y, must satisfy the following equa-
tions of motion:

' b% 1-n(s) rm
P = P — x)— —5 Ve,
XTels) s B
X' =P8,
, n(s) rm 4
0 0
Y= — g V ,
iy pz(s) Yi ,6’2)/2 3Yi0 c
Yiy =Pl
, rm @
ﬂ:—77—w
1z B (?Zi (o)
' Y
ZP ZPiOZ— EX?, (12)

where the prime denotes differentiation wigh=rom now on,
we abbreviate the summation mabk,. Thus, we obtain the
following Hamiltonian:

1[1-
L@@nﬁg[ n(s)]

p(s)

2

H= E(épizx"_ﬁpi2 +5pi22)_ 2 i
2 y p<(s)

ns _,
T Y

rv 1
XV 8x(s)+- (13

"BY2

We expect that the heating rate must be reduced by inyhereV{?)(s) is the second coefficient of the Taylor series

creasing the number of celld, with a fixed tune, referring
to intrabeam scattering theof$ee Eq.(4)]. Following this
speculation, we must select an interaction Hamiltoritgn
that approaches zero for the above infinNg. Thus, we
must apply a canonical transformation to E§). First, we
adopt the coordinatesx;, dy;,dz; and their canonical mo-
mentum &p;y , 5p;y , 6p;, that represent the deviations from

the equilibrium positions,y?,z° and their momenturp?,,

and 6x= (8%, 8Y1,0Z;,....0¢y 0N, OZy)- Here, the coefficients
of the Taylor series generally depend grbecause we ex-
pandV, around the solutions of E¢12). The first coefficient
of the Taylor series has been removed by B@).

In a strong-focusing systemrm(s) is discontinuous be-
cause the focusing system and defocusing system appear step
by step. In order to obtain an interaction Hamiltonian that
becomes smaller ad. becomes larger, we need to make a

pioy, pioz. For this purpose, we consider a canonical transforcanonical transformation, and rewrite the focusing strength

mation that is obtained by the generating function,

using theg function, because thg function is continuous
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and it approaches its mean value for an infilNte. For this D. Explicit calculation for the one-dimension case
purpose, we consider a canonical transformation defined by |, order to proceed further, we must calculate the coeffi-
the following generating function, cients of the Taylor series explicitly. Here, we discuss how to
5)(2 calculate the heating rate. For simplicity, we consider the

FLOX;, 0 tix s Yiyl= [tan¢|x+ax s)] case that the crystal beam has a one-dimensional structure.
Actually, when the number of particlééis smaller than the

2 critical value, the crystallized beam has a structure such
———[tany, + ay(s)]. chain. In Appendix B, we present a Taylor series of the Cou-
28, (5) o lomb potential where the hadron beam has a one-

where

(14)  dimensional structure.
In order to define the phonon frequency, we initially con-

The Hamiltonian is rewritten as sider the Hamiltonian up to second order. Afterwards, it will
3 3 1 be clear that we must consider the fourth order of magnitude.
H= XY LT g2 ERAR N According to Eq.(B1), Eq. (19) is rewritten as
B(s) By(s) 2707 19 0P .
r 1 Hsec f dk[—pipk ( BX(S)QZ) fkgk
57,2 5 NVE(5) ok (15) B(S) 5.5
F T ufu (i— ﬁy<smﬁ) K
By(s) By(s)
OX; =2 Bx(8)JixCOSYiy ,
0 (S) VB(S) (ERai+ Al &) + aaet 2Q5 L8k
Ji .
opx= _(ﬁx(z)) [SiN iy + ay(S)COoSyix ], (20
where
oyi= \/Zﬂy(s)‘]inOSlr//iy:
5, 1—cogknA)
2J,, |12 02=1M 5 21
Spy= _(,3 (';)) [singiy+ ay(s)cosyry].  (16) K™ B?y2 nzl n3A3 @D
y

The Twiss parameters satisfy the following equations:

A is the distance between the nearest-neighbor particles and
k moves from—#/A to #/A, we then make a summation for

d? [1-n(s)] an infinite number of particles and use the following Fourier
g2 VBx(9)+ WW [WP 0, integrals:
1 fdk(z(g )>m(gkexp:ikmA]JrgIexp:—ikmA]),
?W+ By(s)— WT”;O, (17) o
where a, = BX /2. We change the above action-angle me:f dk(2(2 )) (pkeXFiikmA]Jrplexp[—ikmA]),

variables to the coordlnates and their canonical momentum.

We now consider the following generating function:

The Hamiltonian is rewritten as

A 1/2
, : Ym=J dk(m) (peexdikmAl+ 7} exd —ikmAT),
X;

FZ[Xiinv‘piXa‘/’iy]: 1:amfflx tan‘;ﬁly (18 A 12
fdk(z(2 )> (ucexdikmA]+ul exd —ikmA]),

1 1 op2 A\ . .
H= ZBX(S) (X2+P )+ By( )(Y2+P )+ ZIX 6Zm:f dk( 2(277)) (gk equkmA]dl_gl exd_lkmA])r
1 A 1/2
(S) — = VB(S)X; 5pi, + WE5xv<2>(s)5x+---, SPms= fdk(z(z )> (qrexdikmA]
(19) +qf exf —ikmAT),
where  ox=(VBx(S)X1,  VBy(S)Y1,0Z1,....NBx(S) X,
VBy(8)Yn,6zy). We have now succeeded to rewrite the (9)_ E ginf. (22)
Hamiltonian in terms of3 functions. TnEw
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where 6,(6) is the periodics function.
We divide Eq.(20) into a harmonic part{, that is inde-
pendent ofs and an inharmonic paft,

n By — ©
H0=f dk[éplpﬁ EX_BXQE)§I§|<+ EyUlUk

uy ) < VB(9)
MM~ 7Y

A p(s)

+ >(§qu+ aréw)

+QIQk+29§§E§k}y (23

:va

_ A 2
H"f d"{(ﬁxm C>pkpk (BX(S ~A2i-
B2ttt g el
+(L—B (02— 2 +/3 92)77 n
a5 P ySlic|

Y"p(s) p(s)

1
By(s)

+

>)(§ka Qka)] (24)

The mixing term inHy can be eliminated by canonical trans-
formations. The canonical transformation generated by a

generating function,

W &, 7k, kL P Oy LG8l = — V2QE il +

rewrites the HamiltoniarH, as

—t = Mx Mx =4z = zt 7
H0=f dk[plpﬁ( c - B k)?gifk+29§qEQK+§lgk

v X S X 12 —+ —
7< f( )> \/ZQﬁ(M_) (GLé+ ELG) +alay

(26)

We exchange the role df, and its canonical momentudj

by using a canonical transformation whose generating func-

tion is

W=l (27)

We obtain the followingH,:

PH'SICAL REVIEW E 65 026502

+y< ‘fX(S)>¢20 P G+ BT +al,

(28)

In this Hq, the mixing term between the coordinates and its
momentum disappears. The mixing term only appears in a
potential term. This kind of mixing term can be eliminated
by a rotation transformation, which can be obtained by the
generating function,

WL B O, &, {4 1= — (cosbE— sin 6520 i

— (sinB§E,) +cosOsiar,  (29)

< By(5) >
Hex C p(s)

(30

where 6§ satisfies
2y\202

—ZQ§+

tan 205=
T Bx

where 6K is selected in order to eliminate the mixing term.
Since'H, is diagonalized, we can quantize this system as

follows:
112
&= L e 'wff)s (+)
2Mvwf(+) B
_ ﬁwf:r) V2 “
ka:i( 2Mv ek Saf<+)T’
% 1/2 3
= e oy 53(3),
Mk (—ZMvw(kg)) k
(3)\ 12
Glzi(ﬁwk) glol st
2Mv '
_ h 1/2 (=)
=l =—=]| e ' sa’,
gk <2Mvw(k )> k
ﬁw(k_) vz -
ﬁl=i( sva | € A (3D
where

(pe+2C%05

. 1
o= ZCZ{MXHCZW CBuuxp =
CBX/’LX k)2 8C29k#x

\/E . 2) 1/2
X(_<p<s> Cy2+“x_cﬁxﬂk} }
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@2 [Py o\ My Here, we gonsider whether heating occurs or not. We can
W= E_Byﬂk)?! roughly estimaten, as

[al") ali = a(k—k), wk~2%. 37)
[a2,al¥"=s(k—k"), According to Eq.(35), for the lowest order case

[a~)al, "= a(k—k'). (32) %§~w. (39)

In order that the crystalline beam is always stable, ghe )
functions must satisfy In the FODO cell, the system is unstable negy/C~ .

Thus, we cannot satisfy this condition. Further, the phase

2 .
VB, (s _ 1 advance is usually chosen to be
ﬂx>< Axl )> Cy*+CBQL =>B,. (33
p(s) Oy Mx T
=<z, (39)
This generalizes the condition that the ring must be operated c 2

below the transition energh2]. For this diagonalized+,,

. - . . ) because the system can be unstable due to the space-charge
Eq. (24) is rewritten using the following relation: y b 9

effect. This means that the heating cannot occur for the one-
C\12 dimension case up to the second order of the Hamiltonian.
pL= (—) [cos6EPL — sin 655, ], In order to know theTl dependence of the heating rate, we
Hx must calculate the higher order of the transition amplitude. It
is necessary to know the relation between the order of

ak=— V2O sin 95&(+ cosbsl,], the heating rate and the order of the transition amplitude. For
2 this purpose, we see thiedependence in the heating rate. We
UT:(E) ar consider the heating that comes from thetransition of
K My k> phonons. When we consider the first ordedsfin the tran-

» sition matrix as thim-phonon transition heating, the transi-
2 . tion matrix is written as
| %] rooseig—snakzl
ds
~(m= n|f ?ﬁ”’z(a”+a““)|m>. (40)

1 ke kes T
{=—==[sin Pkt cosbply].,

Following Eq.(8), the heating rate is written as

" 12 TABLE |. Parameters for these accelerators and properties of
nk:(é’) . (34)  the hadron beam.
CircumferenceC 87 m
Since we have obtainelf,, we can calculate the transi- | ;.al radius of curvaturg 1m
tiop probability. According to Eqs24) and (34), [H,dSiS  orizontal tunep, = 27, 12.9
written as Vertical tuneu,=2mv, 12.4
” . - Number density of this beam 31860.9 M
f H|ds=2 f [f(s)—flexp(iws)ds Lorentz factory 1.000 0442
0 ke Jo lon species Mgt
=> 1 > fmex;<i 27T—ms) expli w,s)ds, SuperperioN, 9
kK Jomzo C/N¢ Unit lengthl 27145 m
(35 Focusing forceK ¢ 1.227 m?
Defocusing forceKp —2.0505 m2
where f(s) is a generic periodic function of the lattice SuperperioN 10
length, L=C/N., f,, is the Fourier coefficient, ando, Unit lengthl ¢ /25 m
stands for the sum of the two-phonon frequency, which A cusin fo:ceK 15 2
chosen among{~) and w{”. Performing thes integration ¢ g foro o3
in Eq. (35) yields thed function. Thus, we obtain the follow- etocising Toree®o = m
ing resonance condition: Superperiod\, 20
Unit lengthl¢ 7/50 m
Nci+wk=0 (arbitrary integer excepm=0). Focusing forceK e 377 m?
C Defocusing forceK —4.55 m?

(36)
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hvw consider the dispersion relation that frequencies must satisfy,
dT EXF{ n ﬁ) - which is determined by each accelerator. The term that in the
— ~pn-2 B “nhvw Coulomb potential is important is determined by each accel-
ds (—1+ex hvw ) erator.
kgT According to Eq.(B1) in Appendix B, the fourth-order
(no)? interaction termV{*) that is concerned with foun{*)’s, are
"1 (for A—0). (41  Written as

Thus, dT/ds is proportional toT for n=2. For a one-

O 1 [9BUS)(Xnsm—Xn)?

4) _

dimension beam this coefficient is zero. In order to calculate Ve )_m;ﬁovn 3% 48 [m[°A®
the T dependence in the heating rate, we must consider the
higher phonon process. We should notice that the heating 72B4(8) (Xn+m=Xn)*(6Znm— 6Z5)°
effect becomes smaller as the order of the phonon transition N |m|°A®
becomes larger in the lower temperature region.

Here, we consider the effect of the higher order of the 24(52n ¢ m+ 620)*(0Zn s m— 625)°
Coulomb potential. We expect that a similar condition to Eq. + [m|[°A° ' (42)

(36) will be obtained. For example, we consider the case that

(+)s (+)
only four w""s satisfy the resonance conditiony where the third term has nothing to do with the heating,

+ ol + o)+ ol )=N27/C. Actually, we can consider because there is n@function in this term. We write the part
the accelerator that this resonance condition satighies of [ds/(A/Mv)iV{?, which is proportional to
=9 in Table ). When we calculate the heating rate, we bettera{aj " )a()a(’ anda"a{)a(a("’

= ds ” r
(4) — - M
ffmﬁ/(Mv)V m;to% 192(277.) 252, 2A3fdk1dk2dk3dk4

2
X_ﬁp(kl"_ k2+ k3+ k4)

A
2.7 (eiklmA_l)(eikzmA_1)(eik3mA_1)(eik4mA_1)
(+) (+) +) (+)
X + +w, '+
(277)5( Wy, T oy, wy C/NC TE
h +) (+) (+)
—(9A,+7ZB|)a a 'a '+H.c. (43
|
where - 2l
Bi(s)=2 expli oy )b<2> (45
T
1 ( o) ? cosé’kl cosek2 c050k3 coseg“
A=—| = , : . .
74\ C \/w(+ w<+)w<+)w : | is an integer. In order to calculate the matrix elements, we
replace the phonon creation and annihilation operators as
follows:

1w Ko i oKz i oKa
B|=——cosa cosd,"sind,°sin g,

8 C
(+) (+) T(+ T(+)
. — \/ — \/ , 46
\/w(;r)w(kz) ky 20 (46)

=b{", (44)

X
+)
\/“’ “’kz kaﬂ wherex; is a discrete variable that moves fromr/A to /A

e e e in 27/(NA) steps and the operators satisfy
0%, 0,2, 0%, 05 can be calculated by E¢30), b(* andb{")

are Fourier coefficients that are defined by a(K+>|m+’Kl>: /—m+ K1|m+1'<1_1

59-3 oufi gs|of ol VIm, )=y Flm, 1), @)
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The k integration is sometimes replaced by the followingin this case the summation of the phonon frequency must

discrete summation: always be zero. In the accelerator that we consider,&he
5 function is satisfied whed=—1. The heating rate that
T (Rt ()T (H)T5(H)T
dkeo— 3. (48) comes from the terms ay ' ey, ag’ ay, and

afal)al)al) causes the following resonance condition:

When we calculate the transition amplitude, we must square
the matrix element. Thus, oné,(k;+k,+ks+k,) is re- oo+ ol )+ o) =2aN,/C. (50)
placed as follows:

A Though the other parts of the interaction Hamiltonian cause
Op(kyt+ kot kst k4)—>2—N. (490  the other resonance condition, we do not have to calculate
m them for our accelerator, because the phonon frequencies

_ i iti ) 4 )
One 2775(27T|NC/C+wf(ir)_"w(k;)"_w(k;r)—i_w(k:)) is re. cannot satisfy these conditions, for examp:l@{zl + wy

2
placed by the time intervalt” This “ t” is removed in Eq. + o) - wd=27IN./C.
(8). By taking a summation on the number of initial phonons
When theg functions do not have asdependencd,is  weighting the Boltzmann factor and on that of the final
always zero. This means that heating does not occur, becaupbonons,

> 2 2 Ny 1. "‘3N|01(+)Jr el Tal) T|m+ A mgp)

K1,K2,K9,K, K2 3
B R A

(+)T (H)t _(+)t +
XNy 1,...,”3N| aKé a,<3 ( |m+ M) = (N g, nsNIa“ag)ag) (+)|m+ 1,...m3N>

+) (+
X<n+'1,.. n3N|C¥ ’ a(r a(r K:‘)|m+’1,.. m3N>)

K3
Uﬁa)(1+) Uﬁwg\,?’)
1—expg — KaT ool 1—expg — kT

vh(w, +)+(J)(+)+(D( +w -1)
ex -1

kgT
( vhw (: ) vh wﬂf)
=1/ ex KeT —1/|ex KeT

(+) (+) (+) (+)
ks NT +wK2 +wK3 +w, ')

Uﬁw(lﬂ vﬁwg\f’)
e _m+'1kB—Tm_m3'NkB—T

> 24

K1,Kp,K3,K4 Uﬁa) 1
ex
kgT

(+)

P

+ +
+ol" -i—wE< )4 a)g(4)). (51

K2 3

(w,

“keNT

By taking the limitZ—0 and performing integration, we obtain the heating rate,

LdT Fmdkdkfkk 52
Tas ) 0k o (kg ka), (52
where
2 2(w(+)+w(+)+w(+)+w(+) )2 2
(ko) = I (kBT) Ky Ky Kan —ky—kp— K, [9A_,+72B_,]
1:R82 384’772(’)/2_1)2A7 MUZ w(kir)w(k;r)wf(;rn)w(jk)lszfksn dw(k;n) dwf(+)
dksn dk k=—k{—ky—ksy
1
x| 2 —5{1-coskymA — cosk,mA — coska,mA — costky +kp + kgn) mA +cosky + k;)mA
m=1

2
+cogky+Ks,) MA + cog ks, + kl)mA}} , (53
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* N-10
0 N=20
Focusing Free Defocusing Free bherd Free 0.01 ©
Kr Kp P
length ) 7 8l ) 5l ) L
o 0,
o0
o4—— Cell unit -
, i . . _ — 0.001 e
FIG. 2. Lattice configuration of the unit cell. Each parameter is = b 5
written in Table I. E . 4"
[%2] s o n
O o
. . .. = u]
ks, are all values that satisfy the following conditions: '.5 ¢ o o
T o
) ; on  0.0001 - -
= mo !_) - A 1
3n 3 A A .
ju
T T hd
_Ksk1+k2+k3n<z, -
0.01 0.1 1 10 100
27N
(+) (+) (+) (+) - ¢ TIK
wkl + wk2 + a)kSn + w_kl_kz_kSn C . (54) [ ]
FIG. 3. Heating rate for differeril. .
lil. COMPARISON WITH OUR THEORY AND Fig. 3. According to Eq(7), T.=1.16 K. We can see the
SIMULATION RESULTS FOR A ONE-DIMENSIONAL tendency that the heating rate becomes smallei\ abe-

CRYSTAL comes larger. For thH,=9 case, we actually calculated the

According to Eq.(4), we can expect that the heating rate heating rate using our theory. For this number density, the
will be reduced byN; 2 when we make\, larger with fixed ~ crystalline beam has a chain StrfJCt‘(&‘ie Fig. 4. In Fig. ?
tunes and circumference. We also expect Thas almost the ~ We present the dispersion relation of ", of ), and o’
same for anyN,, because there is g, dependence in Eq. and Fourier coefficients of beam oscillations obtained by the
(7). Further, we expect that we can reduce the heating rate ifacking. The results of theory are consistent with the simu-
the lower temperature region by increashg. According to  lation results(see Fig. 6.

Egs.(41), (44), and(53), we can evaluate thid, dependence

of the heating rate. Sincew=27N./C, we suppose that IV. CONCLUSIONS AND DISCUSSIONS

each frequency is proportional M., wheren is the index of We present here a theory that explains the heating rate of
resonance. WheﬁS:O, hadron beams. We evaluate the heating rate at higher tem-
1 300
A| o NW? (55)
C
200

We thus suppose that

1dT 1 100
Tds N T ©e '
§ 0
We therefore expect that we can reduce the heating rate bN’
increasing the lattice periodicitd. with fixed tunes.

We calculated the heating rate by a simulation in order to -100
confirm this expectation. We calculated the heating rate as
follows. First we reduce the beam temperature by a cooler. If

. ) -200
we stop the cooler, the temperature would increase as timi
passes. Actually, the temperature increases in an oscillatin
manner, because of the betatron oscillation. Thus, we took al -300
average of the temperature over some lattice periods. Aftel -800  -200 -100 0 100 200 300
we carried out this average procedure, we calculated the X[um]

heating rate per lattice period. The parameters of the accel-
erators are represented in Table |. The configuration of the FIG. 4. A crystaline beam when the number density is
unit cell is described in Fig. 2. The results are represented i81860.9 m*
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Simulati
(@) RS
[\ :
| A
o o
£ .
)
o 0.001
o
=
$
\ / $
s o
A o
] s
0 0.2 0.4 0.6 0.8 1 -
A 0.0001 -*
ofm ] 0.1 1 10 100
TIK]
7(0(0)
k
,,,,, @ FIG. 6. Heating rate obtained by a simulation and theory.
k
— a? equivalent to phonon emissions in a quantum picture. If the
0.6 ——————— —— phonon transits from lower orbits to higher orbits, heating
\ /b ] occurs. Actually, the heating at lower temperatures is caused
I N~ (b) by a resonance between the lattice periodicity and phonon
0.51 R emission of the crystal lattice. According to this theory, we

expect that the heating rate for a lower temperature part can

'.-'E oal be reduced by increasing the lattice periodicity of the accel-
— 3 erator. Our theory explains well the simulation results. In
- . - order to make crystalline beams, it is better to construct an
8 o3l i accelerator that can reduce the maximum of the heating rate.
2. I By increasing the lattice periodicity, the power of the laser
8 I that cools hadron beams can be reduced.
. 02y i Further, our theory predicts a quantum effect in hadron
S o N Ve T beams. Whertvw/kg>T, T dependence in the heating rate

s is distorted from a polynomial of. By finding this distortion

01t in the heating-rate curve, we will find the quantum effect in
I \/ ] beam physics.
o b N In this paper, we explicitly calculated the heating rate for
-m/A ] WA the case that the crystal beam is one-dimension case. In two
- or three dimension, we expect that the heating rate has the
k[m"] form T-1dT/ds=a+ BT. Thus, the heating rate in these

FIG. 5. Spectrum of the beam frequency obtained by tracking([jimePSiIonS g:afn behlarger than that in oc?e dimension. _In O(der

(@, and dispersion relation abl"), (), and w® obtained by o calculate it for these cases, we need more approximations

theory (b). or mod_els. It is necessary to calculate the heating rate f_or
these dimensions, and confirm that we can reduce the heating
rate by increasingN, for those dimensions, too.

perature using a theory based on intrabeam scattering. We

find that we can reduce the heating rate caused by intrabeam ACKNOWLEDGMENTS

scattering by increasing the lattice periodicity.

However, beam heating at a lower temperature is cause?1
by another mechanism, not intrabeam scattering. If the heal.
ing rate increases upon increasing the lattice periodicity, w
cannot reduce the peak value of the heating rate. We thus,
need a theory to explain beam heating at a lower tempera- APPENDIX A: DIEFUSION TIME
ture. For a lower temperature, we formulate a theory from a
qguantum point of view. We can expect that the hadron beam The diffusion rate of the transverse and longitudinal emit-
is crystallized at a lower temperature. This crystalline beamancese,, €,, €, caused by intrabeam scattering is given as
vibrates around its equilibrium orbit. This kind of vibration is follows [12]:

The authors thank Dr. X. P. Li for originally developing
e MD simulation program. They also thank Dr. H. Oka-
oto for discussions. One of authdS.) thanks the Japan
ociety of the Promotion of Science for financial support.
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2
d m2a?MN(log) | (= daY? d . (" dant
—Ine,= j —In ese e, (N1—Np) < 32 TP
2 T o [de(L+\1)]42 dt o (A1 M) N+ M) ¥AN5+N)
1 1 +two cyclic permutation}, (AB)
X4 TrL@® Tr —3TrL® :
L+l L+l ,
where\ 4, N\, and\ 5 are eigenvalues df.
(A1)
APPENDIX B: TAYLOR SERIES OF THE COULOMB
wherea represents, y, ands and the matrices are given as POTENTIAL FOR ONE-DIMENSION CASE
follows: Here, we explicitly present a Taylor series of the Coulomb
potential for the one-dimension case up to fourth order. The
1 —y¢ 0 potential V. is written as
2.2 0
o= —yg LT op2g2 0| a2 L S PO
€x B ¢ 2i%. 70 |z§3)m— Z§0)| 2 |Zi(9—)m_zi(0)|3
0 0 0
. BYS) ,
X(Xism= X"~ “or o3 (Yiem ™ Yi)
,[0 00 1zVn—27"|
Y
Le==-(0 1 O (A3) 2 )
€ ' + =703 (0Zi +m— 6Z)
*\o 0 0 20—
+i 9(Bu(S)(Xi 1 m—Xi) %+ By(S)(Yi 4 m—Y()?)?
a0 2 40,2
L= , A4
“\o o A 2452 1~ %)’
EREL
Bin B 72B,(8)(Xi+m=X)*(8Z; 4 m— 6Z;)°
P77 28, (A% 20— 27T
o . . 728,(s) , ,
L=L®+LM+LO | is the identity matrix and prime de- - W(YHm_Yi) (0zj1m—0z)"|;. (B1)
notes the differentiation of. The bracketg---) denote the tem
average around the ring. The diffusion rate of the products ofhe odd coefficients of the Taylor series are always zero
these emittances is given as because of their symmetries.
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