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Heating rate of hadron beams during crystallization
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A theory concerning the relation between the heating rate and temperature of hadron beams is formulated
from a quantum point of view. This theory predicts that the heating rate can be reduced by increasing the lattice
periodicity of the accelerator with its fixed tunes and circumference. This prediction is quite consistent with
simulation results.
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I. INTRODUCTION

Hadron beams are currently being accelerated by ac
erators. The velocity of these beams is relatively sm
which means that their Lorentz factorg is not very large
compared with that of electron beams. This is because
hadron has a large mass to be accelerated to the spe
light. In nonrelativistic hadron beams, the space-charge
fect is serious. In space-charge effect-dominated beams
expect that there occurs a special phenomenon, whic
called a crystalline beam. Actually, it has been confirmed t
this type of beam can be created based on molecular dyn
ics ~MD! simulation@1–5#.

The intrinsic temperature of a crystalline beam could
defined by the rms of the kinetic energy of the particles co
prising the beam@4–6#. Thus, by reducing a temperature, w
could obtain the space-charge-dominated beam, or a cry
line beam. It was also known that this type of crystalli
beam can be destroyed by stopping the cooling system du
the alternating gradient focusing system@2,5#. In other
words, a crystalline beam must be maintained by cooling
hadron beam. Further, it has been known that a crysta
beam cannot be obtained in a weak-focusing system@2,5#.
Thus, we could not avoid this beam heating in accelerat
Temperature-heating rate relations could also be obtaine
previous studies by simulations@5–9#. This relation has an
interesting feature. At high temperatures, the heating rate
creases as the temperature decreases. For lower tem
tures, the heating rate decreases as the temperature decr
The heating rate has a peak value for a certain tempera

The above-mentioned feature of the heating rate can
understood qualitatively@9#. For a higher temperature, th
intrabeam scattering effect is significant. Thus, the hea
rate increases as the beam size becomes smaller by red
the temperature. When the temperature is sufficiently low
the intrabeam scattering effect is reduced. The heating
cannot be higher. For a sufficiently low temperature, hea
is caused by lattice vibration of the beam, because the ha
beam is crystallized at this low temperature.

For a higher temperature, there have been theories
deal with the intrabeam scattering effect. Pwinski first f
mulated such a theory, while considering the intrabeam s
tering @10,11#. In this theory, the transverse emittancesex,y
and the longitudinal emittancees have a conservation law,
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wherebx,y are the transverseb functions,h is the dispersion
function, andg is the Lorentz factor. If this conservation law
is exact, there is an equilibrium temperature. The time e
lution of the temperature is confined by this law. Here,
can expect that the temperature will be in equilibrium exp
nentially. Thus, we may evaluate that the heating rate m
be exactly zero for any temperature. However, the hea
rate was positive definite according to previous MD simu
tions. Thus, we cannot apply this conservation law.

In order to create a crystalline beam, it is desirable
reduce the peak value of the heating rate that we mentio
previously. If this is possible, the necessary laser power
be lower. In order to solve this problem, it is necessary
establish a theory to explain the relation between the te
perature and the heating rate. In Sec. II, we mention a the
to explain the simulation results. In Sec. II A, we evaluate
heating rate that is caused by intrabeam scattering. Th
based on a theory established by Bjorken and Mtingwa@12#.
In Sec. II B we evaluate the temperature where intrabe
scattering cannot occur. In Sec. II C, we formulate a the
of heating that is caused by the phonon emissions in a c
talline beam. Especially in Sec. II D, we explicitly calcula
the heating rate by considering a one-dimension beam,
cause such a beam is so much simpler than the two or th
dimension case, and can thus deal with this case most ri
ously. In Sec. III, we find that our theory is consistent wi
simulation results by comparing them. Conclusions and d
cussions are given in Sec. IV. In Appendix A, we show t
diffusion time formula obtained by Bjorken and Mtingw
@12#. In Appendix B, we show the Taylor expansion of th
Coulomb potential for a one-dimension crystal.

II. HEATING MECHANISM

A. Heating caused by intrabeam scattering

Using a formula of Bjorken and Mtingwa@12#, we obtain
an expression of the heating rate. For weak-focusing ac
erators, we reproduce Eq.~1! from Eq. ~A1! in Appendix A.
According to Eq.~A6!, l15l25l3 is the equilibrium point,
which is equivalent to

esS 1

g22
h2

bx
D5

ex

bx
5

ey

by
. ~2!

For strong-focusing accelerators, there is no conserva
law, as they stated. Following the consideration for the we
©2002 The American Physical Society02-1
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focusing case, we expect that the heating rate is determ
by minimizing the value of Eq.~A6!. This condition might
mean thatl15l25l3 . However, this condition cannot b
satisfied, because theb function bx,y(s) and the dispersion
functionh(s) have ans dependence. Even iff in Eq. ~A1! is
completely zero, the situation is the same. Since the hea
is caused by thes dependence of the Twiss parameters,
expand Eq.~A6! around the mean of the Twiss paramete
In real accelerators,f is sometimes very small. We als
make an approximation for a smallf, obtaining the follow-
ing formula:

d

dt
ln~eseyes!5

4

15

p2z2ae
2MN~log!

gG̃

1

b̄x
2

3H K Fg2h̄2

b̄x
S 2

dh

h̄
2

dbx

b̄x
D 2dbxG 2L

1K S dbx2
dby

b̄y

b̄xD 2L
1K F b̄x

b̄y

dby2
g2h̄2

b̄x

S 2
dh

h̄
2

dbx

b̄x
D G 2L J ,

~3!

wherez is the charge of this particle evaluated by the el
tron charge,ae is the fine-structure constant,M is the mass
of the particle,N is the number of particles,~log! is the
Coulomb log,G̃5(2p)5/2exeyAesC, C is the total length of
this ring,b̄x , b̄y , andh̄ are the mean values of each para
eter, dbx5bx2b̄x , dby5by2b̄y , anddh5h2h̄ are the
deviations from each mean value.

By applying Eq.~3! to a FODO lattice~a lattice which is
composed of focusing and defocusing magnets! using the
thin-lens approximation, we obtain the following formula:

d

dt
ln~eseyes!5

4

15

p2ae
2MN~ log!

gG̃

m2

2Nc
2
, ~4!

whereNc is the number of unit cells andm is the tune. From
Eq. ~4!, we find that we can reduce the heating rate by
creasingNc with fixed tunes.

B. Critical temperature

The heating curve has an interesting feature, as mentio
in the introduction. When the temperature is sufficien
high, the heating rate increases as the temperature decre
When the temperature is sufficiently low, the heating r
decreases. If Eqs.~3! and~4! are correct for a lower tempera
ture, the heating rate would be infinite for zero temperatu
This means that the cause of the heating is not intrab
scattering for a lower temperature. Actually, we expect t
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the space-charge effect is serious for a lower temperat
For a space-charge-dominant beam, intrabeam scatte
cannot occur.

The temperature at which intrabeam scattering is not a
to occur can be evaluated qualitatively. When the beam
space-charge dominant, the Coulomb force of this beam
almost be canceled by the external magnetic field, such

z2e2N

C
5

Mvb
2R2

2
, ~5!

wheree is the charge of an electron,vb is the betatron fre-
quency, andR is the radius of this beam. By using Eq.~5!,
the mean distanced between particles is evaluated as fo
lows:

d5S CR2

N D 1/3

5S z2e2

Mvb
2 D 1/3

. ~6!

Under this situation, we expect that the potential of the be
is described as in Fig. 1. In order for intrabeam scattering
occur, particles significantly approach each other. Thus,
kinetic energy must be larger than the potential energy. T
critical temperatureTc beyond which there occurs intrabea
scattering is evaluated as

kBTc.
z2e2

d
5Mc2S r M

vb

c D 2/3

, ~7!

wherer M5z2e2/(Mc2) andkB is the Boltzmann constant.

C. Heating caused by phonon emissions

For a beam with a temperature lower thanTc , the cause
of the heating is expected to be the lattice vibration of
crystallized beam@9#. Here, we consider the heating of th
crystalline beam. This situation can also be described by
phonon emission from a quantum point of view. The tim
dependent Hamiltonian can cause a phonon transition f
one state to another. As time passes, if the number
phonons in higher states becomes larger than those in lo
states, we consider that heating occurs. In this picture,
heating rate is described as follows:

FIG. 1. Schematic picture of coulomb potential of a spa
charge-dominant beam.
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1

T

dT

ds
5(

n,m

v\@~n1,1v1,11¯1n3,Nv3,N!2~m1,1v1,11¯1m3,Nv3,N!#

kBNT

3 lim
t→`

1

t U K n1,1 ,...,n3,NUP expF iM v
\ E

0

t

HIdsGUm1,1 ,...,m3,NL U2

3S 12expF2
v\v1,1

kBT G D¯S 12expF2
v\v3,N

kBT G DexpF2m1,1

v\v1,1

kBT
¯2m3,N

v\v3,N

kBT G , ~8!
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where we assume the phonons obey the Boltzmann distr
tion, T is the temperature,mi , j5mi(kj ) is the number of
phonons in the initial states,ni , j5ni(kj ) is the number of
phonons in the final states,v i , j5v i(kj ) is the lattice vibra-
tion ‘‘frequency,’’ whose dimension is m21, i runs in1, 2,
and 3 andj runs from 1 toN, v is the velocity of the beam
P means the time-ordered product,HI is the interaction
Hamiltonian that comes from thes dependence of the Hamil
tonian, andun1,1 ,...,n3,N& ’s and um1,1,,...,m3,N& ’s are the
phonon eigenstates.

In order to calculate the heating rate, we should calcu
the phonon transition probability. Following, Wei, Li, an
Sessler@1,5#, the original HamiltonianH can be written as

H5(
i 51

N H 1

2
~Pix

2 1Piy
2 1Piz

2 !2
g

r~s!
xi Piz

1
1

2 F @12n~s!#

r2~s!
xi

21
n~s!

r2~s!
yi

2G J 1
r M

b2g2 Vc , ~9!

where

Vc~xi ,yi ,zi !

5
1

2 (
i 51

N

(
mÞ0

1

A~xi 1m2xi !
21~yi 1m2yi !

21~zi 1m2zi !
2

,

~10!

i denotes the particle index,s is the path length of an idea
particle,r(s) is the radius of curvature,b5v/c, x,y,z are the
spatial coordinates,n(s) is the strength of the focusing mag
netic field, which is represented as2r/(B0)dBx /dy
52r/(B0)dBy /dx andB0 is the constant bending magnet
field in they direction.

We expect that the heating rate must be reduced by
creasing the number of cellsNc with a fixed tune, referring
to intrabeam scattering theory@See Eq.~4!#. Following this
speculation, we must select an interaction HamiltonianHI
that approaches zero for the above infiniteNc . Thus, we
must apply a canonical transformation to Eq.~9!. First, we
adopt the coordinatesdxi ,dyi ,dzi and their canonical mo
mentumdpix ,dpiy ,dpiz that represent the deviations fro
the equilibrium positionsxi

0,yi
0,zi

0 and their momentumpix
0 ,

piy
0 , piz

0 . For this purpose, we consider a canonical trans
mation that is obtained by the generating function,
02650
u-

te

n-

r-

W~dpix ,xi ,dpiy ,yi ,dpiz ,zi ,s!5~pix
0 1dpix!xi2dpixxi

01~piy
0

1dpiy!yi2dpiyyi
01~piz

01dpiz!zi

2dpizzi
0. ~11!

Here,xi
0,pix

0 ,yi
0,piy

0 ,zi
0,piz

0 , must satisfy the following equa
tions of motion:

Pix
085

g

r~s!
Piz

0 2
12n~s!

r2~s!
xi

02
r M

b2g2

]

]xi
0 Vc ,

xi
085Pix

0 ,

Piy
0852

n~s!

r2~s!
yi

02
r M

b2g2

]

]yi
0 Vc ,

yiy
085Piy

0 ,

Piz
0852

r M

b2g2

]

]zi
0 Vc ,

zi
085Piz

0 2
g

r~s!
xi

0, ~12!

where the prime denotes differentiation withs. From now on,
we abbreviate the summation mark,S i . Thus, we obtain the
following Hamiltonian:

H5
1

2
~dpix

2 1dpiy
2 1dpiz

2 !2
g

r~s!
dxidpiz1

1

2 F @12n~s!#

r2~s!
dxi

2

1
n~s!

r2~s!
dyi

2G 1
r M

b2g2

1

2
dxV0

~2!dx~s!1¯, ~13!

whereV0
(2)(s) is the second coefficient of the Taylor seri

anddx5(dx1 ,dy1,dz1,...,dxN ,dyN ,dzN). Here, the coefficients
of the Taylor series generally depend ons, because we ex-
pandVc around the solutions of Eq.~12!. The first coefficient
of the Taylor series has been removed by Eq.~12!.

In a strong-focusing system,n(s) is discontinuous be-
cause the focusing system and defocusing system appea
by step. In order to obtain an interaction Hamiltonian th
becomes smaller asNc becomes larger, we need to make
canonical transformation, and rewrite the focusing stren
using theb function, because theb function is continuous
2-3
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and it approaches its mean value for an infiniteNc . For this
purpose, we consider a canonical transformation defined
the following generating function,

F@dxi ,dyi ,c ix ,c iy#52
dxi

2

2bx~s!
@ tanc ix1ax~s!#

2
dyi

2

2by~s!
@ tanc iy1ay~s!#.

~14!

The Hamiltonian is rewritten as

H5
Jix

bx~s!
1

Jiy

by~s!
1

1

2
dpiz

2 2
g

r~s!
dxidpiz

1
r M

b2g2

1

2
dxV0

~2!~s!dx1¯, ~15!

where

dxi5A2bx~s!Jixcosc ix ,

dpx52S 2Jix

bx~s! D
1/2

@sinc ix1ax~s!cosc ix#,

dyi5A2by~s!Jiycosc iy ,

dpy52S 2Jiy

by~s! D
1/2

@sinc iy1ay~s!cosc iy#. ~16!

The Twiss parameters satisfy the following equations:

d2

ds2 Abx~s!1
@12n~s!#

r2~s!
Abx~s!2

1

@Abx~s!#3
50,

d2

ds2 Aby~s!1
n~s!

r2~s!
Aby~s!2

1

@Aby~s!#3
50, ~17!

where ax,y52bx,y8 /2. We change the above action-ang
variables to the coordinates and their canonical moment
We now consider the following generating function:

F2@Xi ,Yi ,c ix,c iy#52
Xi

2

2
tanc ix2

Yi
2

2
tanc iy . ~18!

The Hamiltonian is rewritten as

H5
1

2bx~s!
~Xi

21PiX
2 !1

1

2by~s!
~Yi

21PiY
2 !1

dpix
2

2

2
g

r~s!
Abx~s!Xidpiz1

r M

b2g2

1

2
dxV0

~2!~s!dx1¯,

~19!

where dx5„Abx(s)X1 , Aby(s)Y1 ,dz1 ,...,Abx(s)XN ,
Aby(s)YN ,dzN…. We have now succeeded to rewrite t
Hamiltonian in terms ofb functions.
02650
by

.

D. Explicit calculation for the one-dimension case

In order to proceed further, we must calculate the coe
cients of the Taylor series explicitly. Here, we discuss how
calculate the heating rate. For simplicity, we consider
case that the crystal beam has a one-dimensional struc
Actually, when the number of particlesN is smaller than the
critical value, the crystallized beam has a structure s
chain. In Appendix B, we present a Taylor series of the C
lomb potential where the hadron beam has a o
dimensional structure.

In order to define the phonon frequency, we initially co
sider the Hamiltonian up to second order. Afterwards, it w
be clear that we must consider the fourth order of magnitu
According to Eq.~B1!, Eq. ~19! is rewritten as

Hsec5E dkH 1

bx~s!
pk

†pk1S 1

bx~s!
2bx~s!Vk

2D jk
†jk

1
1

by~s!
uk

†uk1S 1

by~s!
2by~s!Vk

2Dhk
†hk

2
g

r~s!
Abx~s!~jk

†qk1qk
†jk!1qk

†qk12Vk
2zk

†zkJ ,

~20!

where

Vk
25

r M

b2g2 2 (
n51

`
12cos~knD!

n3D3 , ~21!

D is the distance between the nearest-neighbor particles
k moves from2p/D to p/D, we then make a summation fo
an infinite number of particles and use the following Four
integrals:

Xm5E dkS D

2~2p! D
1/2

~jk exp@ ikmD#1jk
† exp@2 ikmD#!,

PmX5E dkS D

2~2p! D
1/2

~pk exp@ ikmD#1pk
† exp@2 ikmD#!,

Ym5E dkS D

2~2p! D
1/2

~hk exp@ ikmD#1hk
† exp@2 ikmD#!,

PmY5E dkS D

2~2p! D
1/2

~uk exp@ ikmD#1uk
† exp@2 ikmD#!,

dzm5E dkS D

2~2p! D
1/2

~zk exp@ ikmD#1zk
† exp@2 ikmD#!,

dpmz5E dkS D

2~2p! D
1/2

~qk exp@ ikmD#

1qk
† exp@2 ikmD#!,

dp~u!5
1

2p (
n52`

`

einu, ~22!
2-4
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wheredp(u) is the periodicd function.
We divide Eq.~20! into a harmonic partH0 that is inde-

pendent ofs and an inharmonic partHI

H05E dkH mx

C
pk

†pk1S mx

C
2b̄xVk

2D jk
†jk1

my

C
uk

†uk

1S my

C
2b̄yVk

2Dhk
†hk2gKAbx~s!

r~s! L ~jk
†qk1qk

†jk!

1qk
†qk12Vk

2zk
†zkJ , ~23!

HI5E dkH S 1

bx~s!
2

mx

C D pk
†pk1S 1

bx~s!
2bx(s)Vk

22
mx

C

1b̄xVk
2D jk

†jk1S 1

by~s!
2

my

C Duk
†uk

1S 1

by~s!
2by(s)Vk

22
my

C
1b̄yVk

2Dhk
†hk

1S 2g
Abx~s!

r~s!
1gKAbx~s!

r~s! L D (jk
†qk2qk

†jk)J . ~24!

The mixing term inH0 can be eliminated by canonical tran
formations. The canonical transformation generated b
generating function,

W@jk ,hk ,zk ,p% k
† ,u% k

† ,q% k
†#52A2Vk

2zkq% k
†1AC

mx
jkp% k

†

1AC

my
hku% k

† ~25!

rewrites the HamiltonianH0 as

H05E dkFp% k
†p% k1S mx

C
2b̄xVk

2D mx

C
j% k

†j% k12Vk
2q% k

†q% k1z% k
†z% k

1gKAbx~s!

r~s! LA2Vk
2S mx

C D 1/2

~q% k
†j% k1j% k

†q% k!1u% k
†u% k

1S my

C
2b̄yVk

2D my

C
h% k

†h% kG . ~26!

We exchange the role ofz% k and its canonical momentumq% k
†

by using a canonical transformation whose generating fu
tion is

W5z% kz̄k . ~27!

We obtain the followingH0 :
02650
a

c-

H05E dkFp% k
†p% k1S mx

C
2b̄xVk

2D mx

C
j% k

†j% k1q̄k
†q̄k12Vk

2z̄k
†z̄k

1gKAbx~s!

r~s! LA2Vk
2Amx

C
~ z̄kj% k1j% k

†z̄k
†!1u% k

†u% k

1S my

C
2b̄yVk

2D my

C
h% k

†h% kG . ~28!

In this H0 , the mixing term between the coordinates and
momentum disappears. The mixing term only appears i
potential term. This kind of mixing term can be eliminate
by a rotation transformation, which can be obtained by
generating function,

W@p% k
† ,q̄k ,j̃k ,z̃k

†#52~cosu0
kj̃k2sinu0

kz̃k
†!p% k

†

2~sinu0
kj̃k!1cosu0

kz̃k
†)q̄k , ~29!

whereu0
k satisfies

tan 2u0
k5

2gA2Vk
2

22Vk
21S mx

C
2b̄xVk

2D mx

C

Amx

C
KAbx~s!

r~s!
L ,

~30!

whereu0
k is selected in order to eliminate the mixing term

SinceH0 is diagonalized, we can quantize this system
follows:

j̃k5S \

2Mvvk
~1 !D 1/2

e2 ivk
~1 !sak

~1 ! ,

p̃ k
† 5 i S \vk

~1 !

2Mv D 1/2

eivk
~1 !sak

~1 !† ,

h% k5S \

2Mvvk
~3!D 1/2

e2 ivk
~3!sak

~3! ,

u% k
†5 i S \vk

~3!

2Mv D 1/2

eivk
~3!sak

~3!†,

j̃k5S \

2Mvvk
~2 !D 1/2

e2 ivk
~2 !sak

~2 ! ,

q̃k
†5 i S \vk

~2 !

2Mv D 1/2

eivk
~2 !sak

~2 !† , ~31!

where

vk
~6 !25

1

2C2 H mx
212C2Vk

22Cb̄xmxVk
26H ~mx

212C2Vk
2

2Cb̄xmxVk
2!228C2Vk

2mx

3S 2K Abx

r~s!L
2

Cg21mx2Cb̄xVk
2D J 1/2J ,
2-5



te

i-

e

ar

-

can

ase

harge
ne-
n.
e
. It

For
e

i-

s of

YOSHIHIRO SHOBUDA AND KAORU YOKOYA PHYSICAL REVIEW E65 026502
vk
~3!25S my

C
2b̄yVk

2D my

C
,

@ak
~1 !,ak8

~1 !†
#5d~k2k8!,

@ak
~3!,ak8

~3!†
#5d~k2k8!,

@ak
~2 !,ak8

~2 !†
#5d~k2k8!. ~32!

In order that the crystalline beam is always stable, theb
functions must satisfy

mx.KAbx~s!

r~s! L 2

Cg21Cb̄xVk
2,

1

Vk
.b̄y . ~33!

This generalizes the condition that the ring must be opera
below the transition energy@2#. For this diagonalizedH0 ,
Eq. ~24! is rewritten using the following relation:

pk
†5S C

mx
D 1/2

@cosu0
kp̃k

†2sinu0
kq̃k#,

qk
†52A2Vk

2@sinu0
kj̃k

†1cosu0
kz̃k#,

uk
†5S C

my
D 1/2

u% k
† ,

jk5S mx

C D 1/2

@cosu0
kj̃k2sinu0

kz̃k
†#,

zk5
1

A2Vk
2 @sinu0

kp̃k1cosu0
kq̃k

†#,

hk5S my

C D 1/2

h% k . ~34!

Since we have obtainedHI , we can calculate the trans
tion probability. According to Eqs.~24! and ~34!, *HIds is
written as

E
0

`

HIds5(
k
E

0

`

@ f ~s!2 f̄ #exp~ ivks!ds

5(
k
E

0

`

(
mÞ0

f m expS i
2pm

C/Nc
sDexp~ ivks!ds,

~35!

where f (s) is a generic periodic function of the lattic
length, L5C/Nc , f m is the Fourier coefficient, andvk
stands for the sum of the two-phonon frequency, which
chosen amongvk

(6) and vk
(3) . Performing thes integration

in Eq. ~35! yields thed function. Thus, we obtain the follow
ing resonance condition:

Nc

2pm

C
1vk50 ~arbitrary integer exceptm50!.

~36!
02650
d

e

Here, we consider whether heating occurs or not. We
roughly estimatevk as

vk;2
mx

C
. ~37!

According to Eq.~35!, for the lowest order case

mx

C
;p. ~38!

In the FODO cell, the system is unstable nearmx /C;p.
Thus, we cannot satisfy this condition. Further, the ph
advance is usually chosen to be

mx

C
<

p

2
, ~39!

because the system can be unstable due to the space-c
effect. This means that the heating cannot occur for the o
dimension case up to the second order of the Hamiltonia

In order to know theT dependence of the heating rate, w
must calculate the higher order of the transition amplitude
is necessary to know the relation between the order ofT in
the heating rate and the order of the transition amplitude.
this purpose, we see the\ dependence in the heating rate. W
consider the heating that comes from then transition of
phonons. When we consider the first order ofds in the tran-
sition matrix as thisn-phonon transition heating, the trans
tion matrix is written as

;^m6nu E ds

\
\n/2~an1a†n!um&. ~40!

Following Eq.~8!, the heating rate is written as

TABLE I. Parameters for these accelerators and propertie
the hadron beam.

CircumferenceC 8p m
Local radius of curvaturer 1 m
Horizontal tunemx52pnx 12.9
Vertical tunemy52pny 12.4
Number density of this beam 31 860.9 m21

Lorentz factorg 1.000 0442
Ion species 24Mg1

SuperperiodNc 9
Unit length l f 2p/45 m
Focusing forceKF 1.227 m22

Defocusing forceKD 22.0505 m22

SuperperiodNc 10
Unit length l f p/25 m
Focusing forceKF 1.5 m22

Defocusing forceKD 22.3 m22

SuperperiodNc 20
Unit length l f p/50 m
Focusing forceKF 3.77 m22

Defocusing forceKD 24.55 m22
2-6
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dT

ds
;\n22

expS n
\vv

kBT D21

S 211expF\vv

kBT G D n n\vv

→ ~nv!2

vn Tn21 ~ for \→0!. ~41!

Thus, dT/ds is proportional toT for n52. For a one-
dimension beam this coefficient is zero. In order to calcul
the T dependence in the heating rate, we must consider
higher phonon process. We should notice that the hea
effect becomes smaller as the order of the phonon trans
becomes larger in the lower temperature region.

Here, we consider the effect of the higher order of t
Coulomb potential. We expect that a similar condition to E
~36! will be obtained. For example, we consider the case
only four vk

(1)’s satisfy the resonance condition:vk1

(1)

1vk2

(1)1vk3

(1)1vk4

(1)5Nc2p/C. Actually, we can conside

the accelerator that this resonance condition satisfies~Nc
59 in Table I!. When we calculate the heating rate, we bet
02650
e
he
g
n

e
.
at

r

consider the dispersion relation that frequencies must sat
which is determined by each accelerator. The term that in
Coulomb potential is important is determined by each acc
erator.

According to Eq.~B1! in Appendix B, the fourth-order
interaction termVc

(4) that is concerned with fourvk
(1)’s, are

written as

Vc
~4!5 (

mÞ0,n

r M

b2g2

1

48S 9bx
2~s!~Xn1m2Xn!4

umu5D5

2
72bx~s!~Xn1m2Xn!2~dzn1m2dzn!2

umu5D5

1
24~dzn1m1dzn!2~dzn1m2dzn!2

umu5D5 D , ~42!

where the third term has nothing to do with the heatin
because there is nob function in this term. We write the par
of *ds/(\/Mv) iVc

(4) , which is proportional to
ak

(1)ak
(1)ak

(1)ak
(1) andak

†(1)ak
(1)ak

(1)ak
(1)
1 2 3 4 1 2 3 4
E
2`

` ds

\/~Mv !
Vc

~4!5 (
mÞ0,m,l 52`

`

i
r M

192~2p!2b2g2D3 E dk1 dk2 dk3 dk4

3
2p

D
dp~k11k21k31k4!

3~2p!dS vk1

~1 !1vk2

~1 !1vk3

~1 !1vk4

~1 !1
2p l

C/Nc
D ~eik1mD21!~eik2mD21!~eik3mD21!~eik4mD21!

umu5

3S \

Mv
~9Al172Bl !ak1

~1 !ak2

~1 !ak3

~1 !ak4

~1 !1H.c.D , ~43!
we
as
where

Al5
1

4 S mx

C D 2 cosu0
k1 cosu0

k2 cosu0
k3 cosu0

k4

Avk1

~1!vk2

~1!vk3

~1!vk4

~1!
bl

~2! ,

Bl5
1

8

mx

C
cosu0

k1 cosu0
k2 sinu0

k3 sinu0
k4

3
Avk3

~1 !vk4

~1 !

Avk1

~1 !vk2

~1 !Vk3

2 Vk4

2
bl

~1! , ~44!

u0
k1,u0

k2,u0
k3,u0

k4 can be calculated by Eq.~30!, bl
(2) andbl

(1)

are Fourier coefficients that are defined by

bx~s!5(
l

expS i
2p l

C/Ne
sDbl

~1! ,
bx
2~s!5(

l
expS i

2p l

C/Nc
Dbl

~2! , ~45!

l is an integer. In order to calculate the matrix elements,
replace the phonon creation and annihilation operators
follows:

ak1

~1 !→A C

2p
ak1

~1 ! , ak1

†~1 !→A C

2p
ak1

†~1 ! , ~46!

wherek1 is a discrete variable that moves from2p/D to p/D
in 2p/(ND) steps and the operators satisfy

ak1

~1 !um1,k1
&5Am1,k1

um1,k1
21&,

ak1

†~1 !um1,k1
&5Am1,k1

11um1,k1
11&. ~47!
2-7
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The k integration is sometimes replaced by the followi
discrete summation:

dk↔ 2p

C (
k

. ~48!

When we calculate the transition amplitude, we must squ
the matrix element. Thus, onedp(k11k21k31k4) is re-
placed as follows:

dp~k11k21k31k4!→ D

2p
N. ~49!

One 2pd(2p lNc/C1vk1

(1)1vk2

(1)1vk3

(1)1vk4

(1)) is re-

placed by the time interval ‘‘t.’’ This ‘‘ t’’ is removed in Eq.
~8!.

When theb functions do not have ans dependence,l is
always zero. This means that heating does not occur, bec
02650
re

se

in this case the summation of the phonon frequency m
always be zero. In the accelerator that we consider, thd
function is satisfied whenl 521. The heating rate tha
comes from the terms ak1

(1)†ak2

(1)†ak3

(1)†ak4

(1)† and

ak1

(1)ak2

(1)ak3

(1)ak4

(1) causes the following resonance conditio

vk1

~1 !1vk2

~1 !1vk3

~1 !1vk4

~1 !52pNc /C. ~50!

Though the other parts of the interaction Hamiltonian ca
the other resonance condition, we do not have to calcu
them for our accelerator, because the phonon frequen
cannot satisfy these conditions, for example,vk1

(1)1vk2

(1)

1vk3

(3)2vk4

(3)52p lNc /C.

By taking a summation on the number of initial phono
weighting the Boltzmann factor and on that of the fin
phonons,
(
k1,k2,k3,k4

(
k18,k28,k38,k48

(
m,n

~^n1,1...,n3,Nuak1

~1 !†ak2

~1 !†ak3

~1 !†ak4

~1 !†um1,1, . . . ,m3,N
&

3^n1,1,...,n3,Nuak
18

~1 !†
ak

28
~1 !†

ak
38

~1 !†
ak

48
~1 !†um1,1,...,m3,N&2^n1,1,...,n3,Nuak1

~1 !ak2

~1 !ak3

~1 !ak4

~1 !um1,1,...,m3,N
&

3^n1,1,...,n3,Nuak
18

~1 !
ak

28
~1 !

ak
38

~1 !
ak

48
~1 !um1,1,...,m3,N&!

v\

kBNT
~vk1

~1 !1vk2

~1 !1vk3

~1 !1vk4

~1 !!

3S 12expF2
v\v1

~1 !

kBT G D¯S 12expF2
v\vN

~3!

kBT G D expF2m1,1

v\v1
~1 !

kBT
¯2m3,N

v\vN
~3!

kBT G

5 (
k1 ,k2 ,k3 ,k4

24

expFv\~vk1

~1 !1vk2

~1 !1vk3

~1 !1vk4

~1 !21!

kBT
G21

S expFv\vk1

~1 !

kBT
G21D S expFv\vk2

~1 !

kBT
G21D S expFv\vk3

~1 !

kBT
G21D S expFv\vk

~1 !

kBT G21D
3

v\

kBNT
~vk1

~1 !1vk2

~1 !1vk3

~1 !1vk4

~1 !!. ~51!

By taking the limit\→0 and performing integration, we obtain the heating rate,

1

T

dT

ds
5E

2p/D

p/D

dk1dk2f ~k1,k2!, ~52!

where

f ~k1,k2!5
r M

2

384p2~g221!2D7 S kBT

Mv2D 2~vk1

~1 !1vk2

~1 !1vk3n

~1 !1v2k12k22k3n

~1 ! !2

vk1

~1 !vk2

~1 !vk3n

~1 !v2k12k22k3n

~1 ! 3
u9A21172B21u2

Udvk3n

~1 !

dk3n
2

dvk
~1 !

dk
U

k52k12k22k3n

U
3F (

m51

`
1

m5 $12cosk1mD2cosk2mD2cosk3nmD2cos~k11k21k3n!mD1cos~k11k2!mD

1cos~k21k3n!mD1cos~k3n1k1!mD%G2

, ~53!
2-8
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k3n are all values that satisfy the following conditions:

k3n5modS k3,
2p

D
,2

p

D D ,

2
p

D
<k11k21k3n,

p

D
,

vk1

~1 !1vk2

~1 !1vk3n

~1 !1v2k12k22k3n

~1 ! 5
2pNc

C
. ~54!

III. COMPARISON WITH OUR THEORY AND
SIMULATION RESULTS FOR A ONE-DIMENSIONAL

CRYSTAL

According to Eq.~4!, we can expect that the heating ra
will be reduced byNc

22 when we makeNc larger with fixed
tunes and circumference. We also expect thatTc is almost the
same for anyNc , because there is noNc dependence in Eq
~7!. Further, we expect that we can reduce the heating ra
the lower temperature region by increasingNc . According to
Eqs.~41!, ~44!, and~53!, we can evaluate theNc dependence
of the heating rate. Sincenv52pNc /C, we suppose tha
each frequency is proportional toNc , wheren is the index of
resonance. Whenu0

k.0,

Al}
1

Nc
n/2 . ~55!

We thus suppose that

1

T

dT

ds
}

1

Nc
2n21 . ~56!

We therefore expect that we can reduce the heating rat
increasing the lattice periodicityNc with fixed tunes.

We calculated the heating rate by a simulation in orde
confirm this expectation. We calculated the heating rate
follows. First we reduce the beam temperature by a coole
we stop the cooler, the temperature would increase as
passes. Actually, the temperature increases in an oscilla
manner, because of the betatron oscillation. Thus, we too
average of the temperature over some lattice periods. A
we carried out this average procedure, we calculated
heating rate per lattice period. The parameters of the ac
erators are represented in Table I. The configuration of
unit cell is described in Fig. 2. The results are represente

FIG. 2. Lattice configuration of the unit cell. Each paramete
written in Table I.
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Fig. 3. According to Eq.~7!, Tc51.16 K. We can see the
tendency that the heating rate becomes smaller, asNc be-
comes larger. For theNc59 case, we actually calculated th
heating rate using our theory. For this number density,
crystalline beam has a chain structure~See Fig. 4!. In Fig. 5,
we present the dispersion relation ofvk

(1), vk
(2), and vk

(3)

and Fourier coefficients of beam oscillations obtained by
tracking. The results of theory are consistent with the sim
lation results~see Fig. 6!.

IV. CONCLUSIONS AND DISCUSSIONS

We present here a theory that explains the heating rat
hadron beams. We evaluate the heating rate at higher

FIG. 3. Heating rate for differentNc .

FIG. 4. A crystalline beam when the number density
31 860.9 m21
2-9
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perature using a theory based on intrabeam scattering.
find that we can reduce the heating rate caused by intrab
scattering by increasing the lattice periodicity.

However, beam heating at a lower temperature is cau
by another mechanism, not intrabeam scattering. If the h
ing rate increases upon increasing the lattice periodicity,
cannot reduce the peak value of the heating rate. We t
need a theory to explain beam heating at a lower temp
ture. For a lower temperature, we formulate a theory from
quantum point of view. We can expect that the hadron be
is crystallized at a lower temperature. This crystalline be
vibrates around its equilibrium orbit. This kind of vibration

FIG. 5. Spectrum of the beam frequency obtained by track
~a!, and dispersion relation ofvk

(1), vk
(2), and vk

(3) obtained by
theory ~b!.
02650
e
am

ed
t-
e
s,
a-
a
m

equivalent to phonon emissions in a quantum picture. If
phonon transits from lower orbits to higher orbits, heati
occurs. Actually, the heating at lower temperatures is cau
by a resonance between the lattice periodicity and pho
emission of the crystal lattice. According to this theory, w
expect that the heating rate for a lower temperature part
be reduced by increasing the lattice periodicity of the acc
erator. Our theory explains well the simulation results.
order to make crystalline beams, it is better to construct
accelerator that can reduce the maximum of the heating r
By increasing the lattice periodicity, the power of the las
that cools hadron beams can be reduced.

Further, our theory predicts a quantum effect in hadr
beams. When\vv/kB.T, T dependence in the heating ra
is distorted from a polynomial ofT. By finding this distortion
in the heating-rate curve, we will find the quantum effect
beam physics.

In this paper, we explicitly calculated the heating rate
the case that the crystal beam is one-dimension case. In
or three dimension, we expect that the heating rate has
form T21 dT/ds5a1bT. Thus, the heating rate in thes
dimensions can be larger than that in one dimension. In o
to calculate it for these cases, we need more approximat
or models. It is necessary to calculate the heating rate
these dimensions, and confirm that we can reduce the hea
rate by increasingNc for those dimensions, too.
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APPENDIX A: DIFFUSION TIME

The diffusion rate of the transverse and longitudinal em
tancesex , ey , es , caused by intrabeam scattering is given
follows @12#:

g

FIG. 6. Heating rate obtained by a simulation and theory.
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d

dt
ln ea5

p2ae
2MN~ log!

gG̃
K E

0

` dll1/2

@det~L1lI !#1/2

3H Tr L ~a! TrS 1

L1lI
D 23Tr L ~a!S 1

L1lI
D J L ,

~A1!

wherea representsx, y, ands and the matrices are given a
follows:

L ~x!5
bx

ex S 1 2gf 0

2gf
g2h2

bx
2 1g2f2 0

0 0 0

D , ~A2!

L ~s!5
g2

es
S 0 0 0

0 1 0

0 0 0
D , ~A3!

L ~y!5
by

ey
S 0 0 0

0 0 0

0 0 1
D , ~A4!

f5h82
bx8h

2bx
, ~A5!

L5L (x)1L (y)1L (s), I is the identity matrix and prime de
notes the differentiation ofs. The bracketŝ¯& denote the
average around the ring. The diffusion rate of the product
these emittances is given as
1,

02650
of

d

dt
ln esexey}K ~l12l2!2E

0

` dll1/2

~l11l!3/2~l21l!3/2~l31l!1/2

1two cyclic permutationsL , ~A6!

wherel1 , l2 , andl3 are eigenvalues ofL.

APPENDIX B: TAYLOR SERIES OF THE COULOMB
POTENTIAL FOR ONE-DIMENSION CASE

Here, we explicitly present a Taylor series of the Coulom
potential for the one-dimension case up to fourth order. T
potentialVc is written as

Vc5
1

2 (
i 52`

`

(
mÞ0

H 1

uzi 1m
~0! 2zi

~0!u
1

1

2 F2
bx~s!

uzi 1m
~0! 2zi

~0!u3

3~Xi 1m2Xi !
22

by~s!

uzi 1m
~0! 2zi

~0!u3
~Yi 1m2Yi !

2

1
2

uzi 1m
~0! 2zi

~0!u3 ~dzi 1m2dzi !
2G

1
1

24F9„bx~s!~Xi 1m2Xi !
21by~s!~Yi 1m2Yi !

2
…

2

uzi 1m
~0! 2zi

~0!u5

1
24~dzi 1m2dzi 1m!4

uzi 1m
~0! 2zi

~0!u5

2
72bx~s!~Xi 1m2Xi !

2~dzi 1m2dzi !
2

uzi 1m
~0! 2zi

~0!u5

2
72by~s!

uzi 1m
~0! 2zi

~0!u5 ~Yi 1m2Yi !
2~dzi 1m2dzi !

2G J . ~B1!

The odd coefficients of the Taylor series are always z
because of their symmetries.
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